Exercise 10

Differentiate both sides of the following equations:

$$
1+x e^{x}=\int_{0}^{x} e^{x-t} u(t) d t
$$

Solution

Differentiating both sides of the equation with respect to x gives us

$$
e^{x}+x e^{x}=u(x) \cdot 1-e^{x} u(0) \cdot 0+\int_{0}^{x} \frac{\partial}{\partial x} e^{x-t} u(t) d t
$$

where we used the Leibnitz rule to differentiate the integral. Therefore,

$$
e^{x}(x+1)=u(x)+\int_{0}^{x} e^{x-t} u(t) d t
$$

